
CSC 2224: Parallel Computer
Architecture and Programming

Memory Hierarchy & Caches

Prof. Gennady Pekhimenko
University of Toronto

Fall 2019

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU and ETH

Reviews: Cache Compression
• Review:

– Pekhimenko et al., “Base-Delta-Immediate
Compression: Practical Data Compression for On-
Chip Caches,” PACT 2012

2

Project Proposal Deadline

• Deadline is on October 1st

• Send emails with your proposals (PDFs) to
csc2224arch@gmail.com

3

Memory (Programmer’s View)

4

Virtual vs. Physical Memory
• Programmer sees virtual memory

– Can assume the memory is “infinite”
• Reality: Physical memory size is much smaller than what

the programmer assumes
• The system (system software + hardware, cooperatively)

maps virtual memory addresses to physical memory
– The system automatically manages the physical memory

space transparently to the programmer

+ Programmer does not need to know the physical size of memory nor manage it à A
small physical memory can appear as a huge one to the programmer à Life is
easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff

5

(Physical) Memory System
• You need a larger level of storage to manage a small

amount of physical memory automatically
à Physical memory has a backing store: disk

• We will first start with the physical memory system

• For now, ignore the virtual à physical indirection

• We will get back to it when the needs of virtual
memory start complicating the design of physical
memory…

6

Idealism

7

Instruction
Supply

Pipeline
(Instruction
execution)

Data
Supply

- Zero latency access

- Infinite capacity

- Zero cost

- Perfect control flow

- No pipeline stalls

-Perfect data flow
(reg/memory dependencies)

- Zero-cycle interconnect
(operand communication)

- Enough functional units

- Zero latency compute

- Zero latency access

- Infinite capacity

- Infinite bandwidth

- Zero cost

The Memory Hierarchy

Memory in a Modern System

9

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Ideal Memory
• Zero access time (latency)
• Infinite capacity
• Zero cost
• Infinite bandwidth (to support multiple accesses

in parallel)

10

The Problem
• Ideal memory’s requirements oppose each other
• Bigger is slower

– Bigger à Takes longer to determine the location
• Faster is more expensive

– Memory technology: SRAM vs. DRAM vs. Disk vs.
Tape

• Higher bandwidth is more expensive
– Need more banks, more ports, higher frequency, or

faster technology

11

Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

– Whether the capacitor is charged or discharged
indicates storage of 1 or 0

– 1 capacitor
– 1 access transistor

• Capacitor leaks through the RC path
– DRAM cell loses charge over time
– DRAM cell needs to be refreshed

12

row enable

_b
itl

in
e

• Static random access memory
• Two cross coupled inverters store a single bit

– Feedback path enables the stored value to persist in the “cell”
– 4 transistors for storage
– 2 transistors for access

Memory Technology: SRAM

13

row select

bi
tli

ne

_b
itl

in
e

Memory Bank Organization and Operation
• Read access sequence:

1. Decode row address
& drive word-lines

2. Selected bits drive
bit-lines

• Entire row read

3. Amplify row data

4. Decode column
address & select subset
of row

• Send to output

5. Precharge bit-lines
• For next access

14

SRAM (Static Random Access Memory)

15

bit-cell array

2n row x 2m-col

(n»m to minimize
overall latency)

sense amp and mux
2m diff pairs

2nn

m

1

row select

bi
tli

ne

_b
itl

in
e

n+m

Read Sequence
1. address decode
2. drive row select
3. selected bit-cells drive bitlines

(entire row is read together)
4. differential sensing and column select

(data is ready)
5. precharge all bitlines

(for next read or write)

Access latency dominated by steps 2 and 3
Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n

DRAM (Dynamic Random Access Memory)

16

row enable
_b

itl
in

e

bit-cell array

2n row x 2m-col

(n»m to minimize
overall latency)

sense amp and mux
2m

2nn

m

1

RAS

CAS
A DRAM die comprises
of multiple such arrays

Bits stored as charges on node
capacitance (non-restorative)

- bit cell loses charge when read
- bit cell loses charge over time

Read Sequence
1~3 same as SRAM
4. a “flip-flopping” sense amp

amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines

Destructive reads
Charge loss over time
Refresh: A DRAM controller must
periodically read each row within
the allowed refresh time (10s of
ms) such that charge is restored

DRAM vs. SRAM
• DRAM

– Slower access (capacitor)
– Higher density (1T 1C cell)
– Lower cost
– Requires refresh (power, performance, circuitry)
– Manufacturing requires putting capacitor and logic together

• SRAM
– Faster access (no capacitor)
– Lower density (6T cell)
– Higher cost
– No need for refresh
– Manufacturing compatible with logic process (no capacitor)

17

The Problem (data from 2011)
• Bigger is slower

– SRAM, 512 Bytes, sub-nanosec
– SRAM, KByte~MByte, ~nanosec
– DRAM, Gigabyte, ~50 nanosec
– Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)
– SRAM, < 10$ per Megabyte
– DRAM, < 1$ per Megabyte
– Hard Disk < 1$ per Gigabyte
– These sample values (circa ~2011) scale with time

• Other technologies have their place as well
– Flash memory, PC-RAM, MRAM, RRAM (not mature yet)

18

The Problem (Modern)
• Faster is more expensive (dollars and chip area)

– SRAM, $5000 per GB
– DRAM, < $100 per GB
– SSD, < $0.50 per GB
– Hard Disk < $0.04 per GB
– NVDIMM < $10 per GB

19

Why Memory Hierarchy?
• We want both fast and large

• But we cannot achieve both with a single level of
memory

• Idea: Have multiple levels of storage
(progressively bigger and slower as the levels are
farther from the processor) and ensure most of
the data the processor needs is kept in the
fast(er) level(s)

20

The Memory Hierarchy

21

fast
small

big but slow

move what you use here

backup
everything
here

With good locality of
reference, memory
appears as fast as
and as large as

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

Memory Hierarchy
• Fundamental tradeoff

– Fast memory: small
– Large memory: slow

• Idea: Memory hierarchy

• Latency, cost, size,
bandwidth

22

CPU
Main

Memory
(DRAM)RF

Cache

Hard Disk

Locality
• One’s recent past is a very good predictor of his/her

near future.

• Temporal Locality: If you just did something, it is
very likely that you will do the same thing again
soon
– since you are here today, there is a good chance you will

be here again and again regularly

• Spatial Locality: If you did something, it is very likely
you will do something similar/related (in space)
– every time I find you in this room, you are probably

sitting close to the same people
23

Memory Locality
• A “typical” program has a lot of locality in memory

references
– typical programs are composed of “loops”

• Temporal: A program tends to reference the same
memory location many times and all within a small
window of time

• Spatial: A program tends to reference a cluster of memory
locations at a time
– most notable examples:

1. instruction memory references
2. array/data structure references

24

Caching Basics: Exploit Temporal Locality
• Idea: Store recently accessed data in automatically

managed fast memory (called cache)
• Anticipation: the data will be accessed again soon

• Temporal locality principle
– Recently accessed data will be again accessed in the near

future
– This is what Maurice Wilkes had in mind:

• Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

• “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

25

Caching Basics: Exploit Spatial Locality
• Idea: Store addresses adjacent to the recently accessed

one in automatically managed fast memory
– Logically divide memory into equal size blocks
– Fetch to cache the accessed block in its entirety

• Anticipation: nearby data will be accessed soon

• Spatial locality principle
– Nearby data in memory will be accessed in the near future

• E.g., sequential instruction access, array traversal
– This is what IBM 360/85 implemented

• 16 Kbyte cache with 64 byte blocks
• Liptay, “Structural aspects of the System/360 Model 85 II: the cache,”

IBM Systems Journal, 1968.

26

The Bookshelf Analogy
• Book in your hand
• Desk
• Bookshelf
• Boxes at home
• Boxes in storage

• Recently-used books tend to stay on desk
– Comp Arch books, books for classes you are currently taking
– Until the desk gets full

• Adjacent books in the shelf needed around the same time
– If I have organized/categorized my books well in the shelf

27

Caching in a Pipelined Design
• The cache needs to be tightly integrated into the pipeline

– Ideally, access in 1-cycle so that dependent operations do not
stall

• High frequency pipeline à Cannot make the cache large
– But, we want a large cache AND a pipelined design

• Idea: Cache hierarchy

28

CPU

Main
Memory
(DRAM)

RF
Level1
Cache

Level 2
Cache

A Note on Manual vs. Automatic Management
• Manual: Programmer manages data movement across

levels
-- too painful for programmers on substantial programs
– “core” vs “drum” memory in the 50’s
– still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache) and GPUs (called “shared memory”)

• Automatic: Hardware manages data movement across
levels, transparently to the programmer
++ programmer’s life is easier
– the average programmer doesn’t need to know about it

• You don’t need to know how big the cache is and how it works to write a
“correct” program! (What if you want a “fast” program?)

29

A Modern Memory Hierarchy

30

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache
management

Memory
Abstraction

Hierarchical Latency Analysis
• For a given memory hierarchy level i it has a technology-intrinsic

access time of ti, The perceived access time Ti is longer than ti
• Except for the outer-most hierarchy, when looking for a given

address there is
– a chance (hit-rate hi) you “hit” and access time is ti
– a chance (miss-rate mi) you “miss” and access time ti +Ti+1
– hi + mi = 1

• Thus
Ti = hi·ti + mi·(ti + Ti+1)
Ti = ti + mi ·Ti+1

hi and mi are defined to be the hit-rate
and miss-rate of just the references that missed at Li-1

31

Hierarchy Design Considerations
• Recursive latency equation

Ti = ti + mi ·Ti+1

• The goal: achieve desired T1 within allowed cost
• Ti » ti is desirable
• Keep mi low

– increasing capacity Ci lowers mi, but beware of increasing ti

– lower mi by smarter management (replacement::anticipate what you
don’t need, prefetching::anticipate what you will need)

• Keep Ti+1 low
– faster lower hierarchies, but beware of increasing cost
– introduce intermediate hierarchies as a compromise

32

• 90nm P4, 3.6 GHz
• L1 D-cache

– C1 = 16K
– t1 = 4 cyc int / 9 cycle fp

• L2 D-cache
– C2 =1024 KB
– t2 = 18 cyc int / 18 cyc fp

• Main memory
– t3 = ~ 50ns or 180 cyc

• Notice
– best case latency is not 1
– worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

Intel Pentium 4 Example

Cache Basics and Operation

Cache
• Generically, any structure that “memoizes” frequently

used results to avoid repeating the long-latency
operations required to reproduce the results from
scratch, e.g. a web cache

• Most commonly in the on-die context: an
automatically-managed memory hierarchy based on
SRAM
– memoize in SRAM the most frequently accessed DRAM

memory locations to avoid repeatedly paying for the DRAM
access latency

35

Caching Basics
n Block (line): Unit of storage in the cache

qMemory is logically divided into cache blocks that map to
locations in the cache

n On a reference:
qHIT: If in cache, use cached data instead of accessing memory
qMISS: If not in cache, bring block into cache

nMaybe have to kick something else out to do it

n Some important cache design decisions
qPlacement: where and how to place/find a block in cache?
qReplacement: what data to remove to make room in cache?
qGranularity of management: large or small blocks? Subblocks?
qWrite policy: what do we do about writes?
qInstructions/data: do we treat them separately?

36

Cache Abstraction and Metrics

• Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
• Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)
• Aside: Can reducing AMAT reduce performance?

37

Address
Tag Store

(is the address
in the cache?

+ bookkeeping)

Data Store

(stores
memory
blocks)

Hit/miss? Data

A Basic Hardware Cache Design
• We will start with a basic hardware cache design

• Then, we will examine a multitude of ideas to
make it better

38

Blocks and Addressing the Cache
n Memory is logically divided into fixed-size blocks

n Each block maps to a location in the cache, determined by
the index bits in the address
qused to index into the tag and data stores

n Cache access:
1) index into the tag and data stores with index bits in address
2) check valid bit in tag store
3) compare tag bits in address with the stored tag in tag store

n If a block is in the cache (cache hit), the stored tag should
be valid and match the tag of the block

39

8-bit address

tag index byte in block

3 bits3 bits2b

Direct-Mapped Cache: Placement and Access
• Assume byte-addressable memory: 256 bytes, 8-

byte blocks à 32 blocks
• Assume cache: 64 bytes, 8 blocks

– Direct-mapped: A block can go to only one location

– Addresses with same index contend for the same
location: Cause conflict misses

40

Tag store Data store

Address

tag index byte in block

3 bits3 bits2b

V tag

=? MUX
byte in block

Hit? Data

Direct-Mapped Caches
• Direct-mapped cache: Two blocks in memory that

map to the same index in the cache cannot be
present in the cache at the same time
– One index à one entry

• Can lead to 0% hit rate if more than one block
accessed in an interleaved manner map to the same
index
– Assume addresses A and B have the same index bits but

different tag bits
– A, B, A, B, A, B, A, B, … à conflict in the cache index
– All accesses are conflict misses

41

• Addresses 0 and 8 always conflict in direct mapped cache
• Instead of having one column of 8, have 2 columns of 4 blocks

Set Associativity

42

Tag store Data store

V tag

=?

V tag

=?

Address
tag index byte in block

3 bits2 bits3b

Logic

MUX

MUX
byte in block

Key idea: Associative memory within the set
+ Accommodates conflicts better (fewer conflict misses)
-- More complex, slower access, larger tag store

SET

Hit?

Higher Associativity
• 4-way

+ Likelihood of conflict misses even lower
-- More tag comparators and wider data mux; larger tags

43

Tag store

Data store

=?=? =?=?

MUX

MUX
byte in block

Logic Hit?

Full Associativity
• Fully associative cache

– A block can be placed in any cache location

44

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Associativity (and Tradeoffs)
• Degree of associativity: How many blocks can map to

the same index (or set)?
• Higher associativity

++ Higher hit rate
-- Slower cache access time
(hit latency and data access latency)
-- More expensive hardware
(more comparators)

• Diminishing returns from
higher associativity

45 associativity

hit rate

Issues in Set-Associative Caches
• Think of each block in a set having a “priority”

– Indicating how important it is to keep the block in the cache
• Key issue: How do you determine/adjust block priorities?
• There are three key decisions in a set:

– Insertion, promotion, eviction (replacement)
• Insertion: What happens to priorities on a cache fill?

– Where to insert the incoming block, whether or not to insert the block

• Promotion: What happens to priorities on a cache hit?
– Whether and how to change block priority

• Eviction/replacement: What happens to priorities on a
cache miss?
– Which block to evict and how to adjust priorities

46

Eviction/Replacement Policy
• Which block in the set to replace on a cache miss?

– Any invalid block first
– If all are valid, consult the replacement policy

• Random
• FIFO
• Least recently used (how to implement?)
• Not most recently used
• Least frequently used?
• Least costly to re-fetch?

– Why would memory accesses have different cost?

• Hybrid replacement policies
• Optimal replacement policy?

47

Implementing LRU
• Idea: Evict the least recently accessed block
• Problem: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:
– What do you need to implement LRU perfectly?

• Question: 4-way set associative cache:
– What do you need to implement LRU perfectly?
– How many different orderings possible for the 4 blocks in the

set?
– How many bits needed to encode the LRU order of a block?
– What is the logic needed to determine the LRU victim?

48

Approximations of LRU
• Most modern processors do not implement “true LRU”

(also called “perfect LRU”) in highly-associative caches

• Why?
– True LRU is complex
– LRU is an approximation to predict locality anyway (i.e., not

the best possible cache management policy)

• Examples:
– Not MRU (not most recently used)
– Hierarchical LRU: divide the N-way set into M “groups”, track

the MRU group and the MRU way in each group
– Victim-NextVictim Replacement: Only keep track of the victim

and the next victim

49

Hierarchical LRU (not MRU)
• Divide a set into multiple groups
• Keep track of only the MRU group
• Keep track of only the MRU block in each group

• On replacement, select victim as:
– A not-MRU block in one of the not-MRU groups

(randomly pick one of such blocks/groups)

50

Cache Replacement Policy: LRU or Random
• LRU vs. Random: Which one is better?

– Example: 4-way cache, cyclic references to A, B, C, D, E
• 0% hit rate with LRU policy

• Set thrashing: When the “program working set” in a set is
larger than set associativity
– Random replacement policy is better when thrashing occurs

• In practice:
– Depends on workload
– Average hit rate of LRU and Random are similar

• Best of both Worlds: Hybrid of LRU and Random
– How to choose between the two? Set sampling

• See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ ISCA
2006.

51

What Is the Optimal?
• Belady’s OPT

– Replace the block that is going to be referenced furthest in
the future by the program

– Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

– How do we implement this? Simulate?

• Is this optimal for minimizing miss rate?
• Is this optimal for minimizing execution time?

– No. Cache miss latency/cost varies from block to block!
– Two reasons: Remote vs. local caches and miss overlapping
– Qureshi et al. “A Case for MLP-Aware Cache

Replacement,“ ISCA 2006.

52

What’s In A Tag Store Entry?
• Valid bit
• Tag
• Replacement policy bits

• Dirty bit?
– Write back vs. write through caches

53

Handling Writes (I)
n When do we write the modified data in a cache to the next

level?
• Write through: At the time the write happens
• Write back: When the block is evicted

– Write-back
+ Can combine multiple writes to the same block before eviction

– Potentially saves bandwidth between cache levels + saves energy
-- Need a bit in the tag store indicating the block is “dirty/modified”

– Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence because

no need to check close-to-processor caches’ tag stores for presence
-- More bandwidth intensive; no combining of writes

54

Handling Writes (II)
• Do we allocate a cache block on a write miss?

– Allocate on write miss: Yes
– No-allocate on write miss: No

• Allocate on write miss
+ Can combine writes instead of writing each of them

individually to next level
+ Simpler because write misses can be treated the same way as

read misses
-- Requires (?) transfer of the whole cache block

• No-allocate
+ Conserves cache space if locality of writes is low (potentially

better cache hit rate)

55

Handling Writes (III)
• What if the processor writes to an entire block

over a small amount of time?

• Is there any need to bring the block into the
cache from memory in the first place?

• Ditto for a portion of the block, i.e., subblock
– E.g., 4 bytes out of 64 bytes

56

Cache Performance

Cache Parameters vs. Miss/Hit Rate

• Cache size
• Block size
• Associativity

• Replacement policy
• Insertion/Placement policy

58

Cache Size
• Cache size: total data (not including tag) capacity

– bigger can exploit temporal locality better
– not ALWAYS better

• Too large a cache adversely affects hit and miss latency
– smaller is faster => bigger is slower
– access time may degrade critical path

• Too small a cache
– doesn’t exploit temporal locality well
– useful data replaced often

• Working set: the whole set of data
the executing application references
– Within a time interval

59

hit rate

cache size

“working set”
size

Block Size
• Block size is the data that is associated with an address tag

– not necessarily the unit of transfer between hierarchies
• Sub-blocking: A block divided into multiple pieces (each with V bit)

– Can improve “write” performance

• Too small blocks
– don’t exploit spatial locality well
– have larger tag overhead

• Too large blocks
– too few total # of blocks à less

temporal locality exploitation
– waste of cache space and
bandwidth/energy:

if spatial locality is not high

60

hit rate

block
size

Paper Review #1: Summary

61

• Contents and merits are summarized well
• Main problems are in weaknesses and future work parts
• Unjustified claims or too high-level

• "I don't believe ... is a realistic assumption“

• "the paper should provide possible future research direction"
• We can list more specific examples on what can be done
differently/better

Paper Review #1: Grades Distribution

62

0

1

2

3

4

5

6

8 9 10

Grade Distribution
Grades (out of 10)

Review #3: Cache Compression

• Pekhimenko et al., “Base-Delta-Immediate
Compression: Practical Data Compression for On-Chip
Caches,” PACT 2012

63

CSC 2224: Parallel Computer
Architecture and Programming

Memory Hierarchy & Caches

Prof. Gennady Pekhimenko
University of Toronto

Fall 2019

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU and ETH

