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Reviews: Cache Compression
• Review:

– Pekhimenko et al., “Base-Delta-Immediate 
Compression: Practical Data Compression for On-
Chip Caches,” PACT 2012
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Project Proposal Deadline

• Deadline is on October 1st

• Send emails with your proposals (PDFs) to 
csc2224arch@gmail.com
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Memory (Programmer’s View) 
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Virtual vs. Physical Memory
• Programmer sees virtual memory

– Can assume the memory is “infinite”
• Reality: Physical memory size is much smaller than what 

the programmer assumes
• The system (system software + hardware, cooperatively) 

maps virtual memory addresses to physical memory
– The system automatically manages the physical memory 

space transparently to the programmer

+ Programmer does not need to know the physical size of memory nor manage it à A 
small physical memory can appear as a huge one to the programmer à Life is 
easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff
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(Physical) Memory System
• You need a larger level of storage to manage a small 

amount of physical memory automatically
à Physical memory has a backing store: disk

• We will first start with the physical memory system

• For now, ignore the virtual à physical indirection

• We will get back to it when the needs of virtual 
memory start complicating the design of physical 
memory…
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Idealism
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The Memory Hierarchy



Memory in a Modern System
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Ideal Memory
• Zero access time (latency)
• Infinite capacity
• Zero cost
• Infinite bandwidth (to support multiple accesses 

in parallel)
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The Problem
• Ideal memory’s requirements oppose each other
• Bigger is slower

– Bigger à Takes longer to determine the location
• Faster is more expensive

– Memory technology: SRAM vs. DRAM vs. Disk vs. 
Tape

• Higher bandwidth is more expensive
– Need more banks, more ports, higher frequency, or 

faster technology
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Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

– Whether the capacitor is charged or discharged 
indicates storage of 1 or 0

– 1 capacitor
– 1 access transistor

• Capacitor leaks through the RC path
– DRAM cell loses charge over time
– DRAM cell needs to be refreshed
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• Static random access memory
• Two cross coupled inverters store a single bit

– Feedback path enables the stored value to persist in the “cell”
– 4 transistors for storage
– 2 transistors for access

Memory Technology: SRAM
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Memory Bank Organization and Operation
• Read access sequence:

1. Decode row address 
& drive word-lines

2. Selected bits drive 
bit-lines

• Entire row read

3. Amplify row data

4. Decode column 
address & select subset 
of row

• Send to output

5. Precharge bit-lines
• For next access
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SRAM (Static Random Access Memory)
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Read Sequence
1. address decode
2. drive row select
3. selected bit-cells drive bitlines

(entire row is read together)
4. differential sensing and column select

(data is ready)
5. precharge all bitlines

(for next read or write)

Access latency dominated by steps 2 and 3
Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n



DRAM (Dynamic Random Access Memory)
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Read Sequence
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DRAM vs. SRAM
• DRAM

– Slower access (capacitor)
– Higher density (1T 1C cell)
– Lower cost
– Requires refresh (power, performance, circuitry)
– Manufacturing requires putting capacitor and logic together

• SRAM
– Faster access (no capacitor)
– Lower density (6T cell)
– Higher cost
– No need for refresh
– Manufacturing compatible with logic process (no capacitor)
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The Problem (data from 2011)
• Bigger is slower

– SRAM, 512 Bytes, sub-nanosec
– SRAM,  KByte~MByte, ~nanosec
– DRAM, Gigabyte, ~50 nanosec
– Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)
– SRAM, < 10$ per Megabyte
– DRAM, < 1$ per Megabyte
– Hard Disk < 1$ per Gigabyte
– These sample values (circa ~2011) scale with time

• Other technologies have their place as well 
– Flash memory, PC-RAM, MRAM, RRAM (not mature yet)
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The Problem (Modern)
• Faster is more expensive (dollars and chip area)

– SRAM, $5000 per GB
– DRAM, < $100 per GB
– SSD, < $0.50 per GB
– Hard Disk < $0.04 per GB
– NVDIMM < $10 per GB
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Why Memory Hierarchy?
• We want both fast and large

• But we cannot achieve both with a single level of 
memory

• Idea: Have multiple levels of storage 
(progressively bigger and slower as the levels are 
farther from the processor) and ensure most of 
the data the processor needs is kept in the 
fast(er) level(s)
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The Memory Hierarchy
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Memory Hierarchy
• Fundamental tradeoff

– Fast memory: small
– Large memory: slow

• Idea: Memory hierarchy

• Latency, cost, size, 
bandwidth
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Locality
• One’s recent past is a very good predictor of his/her 

near future.

• Temporal Locality:  If you just did something, it is 
very likely that you will do the same thing again 
soon
– since you are here today, there is a good chance you will 

be here again and again regularly

• Spatial Locality:  If you did something, it is very likely 
you will do something similar/related (in space)
– every time I find you in this room, you are probably 

sitting close to the same people
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Memory Locality
• A “typical” program has a lot of locality in memory 

references
– typical programs are composed of “loops”

• Temporal: A program tends to reference the same 
memory location many times and all within a small 
window of time

• Spatial: A program tends to reference a cluster of memory 
locations at a time 
– most notable examples: 

1. instruction memory references 
2. array/data structure references
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Caching Basics: Exploit Temporal Locality
• Idea: Store recently accessed data in automatically 

managed fast memory (called cache)
• Anticipation: the data will be accessed again soon

• Temporal locality principle
– Recently accessed data will be again accessed in the near 

future
– This is what Maurice Wilkes had in mind:

• Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965.

• “The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.”
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Caching Basics: Exploit Spatial Locality
• Idea: Store addresses adjacent to the recently accessed 

one in automatically managed fast memory
– Logically divide memory into equal size blocks
– Fetch to cache the accessed block in its entirety

• Anticipation: nearby data will be accessed soon

• Spatial locality principle
– Nearby data in memory will be accessed in the near future

• E.g., sequential instruction access, array traversal
– This is what IBM 360/85 implemented

• 16 Kbyte cache with 64 byte blocks
• Liptay, “Structural aspects of the System/360 Model 85 II: the cache,”

IBM Systems Journal, 1968.
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The Bookshelf Analogy
• Book in your hand
• Desk
• Bookshelf
• Boxes at home
• Boxes in storage

• Recently-used books tend to stay on desk
– Comp Arch books, books for classes you are currently taking
– Until the desk gets full

• Adjacent books in the shelf needed around the same time
– If I have organized/categorized my books well in the shelf
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Caching in a Pipelined Design
• The cache needs to be tightly integrated into the pipeline 

– Ideally, access in 1-cycle so that dependent operations do not 
stall

• High frequency pipeline à Cannot make the cache large
– But, we want a large cache AND a pipelined design

• Idea: Cache hierarchy
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A Note on Manual vs. Automatic Management
• Manual: Programmer manages data movement across 

levels
-- too painful for programmers on substantial programs
– “core” vs “drum” memory in the 50’s
– still done in some embedded processors (on-chip scratch pad 
SRAM in lieu of a cache) and GPUs (called “shared memory”)

• Automatic: Hardware manages data movement across 
levels, transparently to the programmer
++ programmer’s life is easier
– the average programmer doesn’t need to know about it

• You don’t need to know how big the cache is and how it works to write a 
“correct” program! (What if you want a “fast” program?)
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A Modern Memory Hierarchy
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Hierarchical Latency Analysis
• For a given memory hierarchy level i it has a technology-intrinsic 

access time of ti, The perceived access time Ti is longer than ti
• Except for the outer-most hierarchy, when looking for a given 

address there is 
– a chance (hit-rate hi) you “hit” and access time is ti
– a chance (miss-rate mi) you “miss” and access time ti +Ti+1 
– hi + mi = 1

• Thus
Ti = hi·ti + mi·(ti + Ti+1)
Ti = ti + mi ·Ti+1 

hi and mi are defined to be the hit-rate
and miss-rate of just the references that missed at Li-1  
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Hierarchy Design Considerations
• Recursive latency equation

Ti = ti + mi ·Ti+1   

• The goal: achieve desired T1 within allowed cost
• Ti » ti is desirable
• Keep mi low

– increasing capacity Ci lowers mi, but beware of increasing ti

– lower mi by smarter management (replacement::anticipate what you 
don’t need, prefetching::anticipate what you will need)

• Keep Ti+1 low
– faster lower hierarchies, but beware of increasing cost
– introduce intermediate hierarchies as a compromise 
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• 90nm P4, 3.6 GHz
• L1 D-cache

– C1 = 16K
– t1 = 4 cyc int / 9 cycle fp 

• L2 D-cache
– C2 =1024 KB 
– t2 = 18 cyc int / 18 cyc fp

• Main memory
– t3 = ~ 50ns or 180 cyc

• Notice
– best case latency is not 1 
– worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

Intel Pentium 4 Example



Cache Basics and Operation



Cache
• Generically, any structure that “memoizes” frequently 

used results to avoid repeating the long-latency 
operations required to reproduce the results from 
scratch, e.g. a web cache

• Most commonly in the on-die context: an 
automatically-managed memory hierarchy based on 
SRAM
– memoize in SRAM the most frequently accessed DRAM 

memory locations to avoid repeatedly paying for the DRAM 
access latency
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Caching Basics
n Block (line): Unit of storage in the cache

qMemory is logically divided into cache blocks that map to 
locations in the cache

n On a reference:
qHIT: If in cache, use cached data instead of accessing memory
qMISS: If not in cache, bring block into cache

nMaybe have to kick something else out to do it

n Some important cache design decisions
qPlacement: where and how to place/find a block in cache?
qReplacement: what data to remove to make room in cache?
qGranularity of management: large or small blocks? Subblocks?
qWrite policy: what do we do about writes?
qInstructions/data: do we treat them separately?
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Cache Abstraction and Metrics

• Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
• Average memory access time (AMAT)

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )
• Aside: Can reducing AMAT reduce performance?
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A Basic Hardware Cache Design
• We will start with a basic hardware cache design

• Then, we will examine a multitude of ideas to 
make it better
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Blocks and Addressing the Cache
n Memory is logically divided into fixed-size blocks

n Each block maps to a location in the cache, determined by 
the index bits in the address
qused to index into the tag and data stores 

n Cache access: 
1) index into the tag and data stores with index bits in address 
2) check valid bit in tag store
3) compare tag bits in address with the stored tag in tag store

n If a block is in the cache (cache hit), the stored tag should 
be valid and match the tag of the block
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Direct-Mapped Cache: Placement and Access
• Assume byte-addressable memory: 256 bytes, 8-

byte blocks à 32 blocks
• Assume cache: 64 bytes, 8 blocks

– Direct-mapped: A block can go to only one location

– Addresses with same index contend for the same 
location: Cause conflict misses
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Direct-Mapped Caches
• Direct-mapped cache: Two blocks in memory that 

map to the same index in the cache cannot be 
present in the cache at the same time
– One index à one entry

• Can lead to 0% hit rate if more than one block 
accessed in an interleaved manner map to the same 
index 
– Assume addresses A and B have the same index bits but 

different tag bits
– A, B, A, B, A, B, A, B, … à conflict in the cache index
– All accesses are conflict misses
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• Addresses 0 and 8 always conflict in direct mapped cache
• Instead of having one column of 8, have 2 columns of 4 blocks

Set Associativity
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Higher Associativity
• 4-way

+ Likelihood of conflict misses even lower
-- More tag comparators and wider data mux; larger tags
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Full Associativity
• Fully associative cache

– A block can be placed in any cache location
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Associativity (and Tradeoffs)
• Degree of associativity: How many blocks can map to 

the same index (or set)?
• Higher associativity

++ Higher hit rate
-- Slower cache access time 
(hit latency and data access latency)
-- More expensive hardware 
(more comparators)

• Diminishing returns from 
higher associativity

45 associativity
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Issues in Set-Associative Caches
• Think of each block in a set having a “priority”

– Indicating how important it is to keep the block in the cache
• Key issue: How do you determine/adjust block priorities?
• There are three key decisions in a set:

– Insertion, promotion, eviction (replacement)
• Insertion: What happens to priorities on a cache fill?

– Where to insert the incoming block, whether or not to insert the block

• Promotion: What happens to priorities on a cache hit?
– Whether and how to change block priority

• Eviction/replacement: What happens to priorities on a 
cache miss?
– Which block to evict and how to adjust priorities
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Eviction/Replacement Policy
• Which block in the set to replace on a cache miss?

– Any invalid block first
– If all are valid, consult the replacement policy

• Random
• FIFO
• Least recently used (how to implement?)
• Not most recently used
• Least frequently used?
• Least costly to re-fetch?

– Why would memory accesses have different cost?

• Hybrid replacement policies
• Optimal replacement policy? 
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Implementing LRU
• Idea: Evict the least recently accessed block
• Problem: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:
– What do you need to implement LRU perfectly?

• Question: 4-way set associative cache: 
– What do you need to implement LRU perfectly?
– How many different orderings possible for the 4 blocks in the 

set? 
– How many bits needed to encode the LRU order of a block?
– What is the logic needed to determine the LRU victim?
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Approximations of LRU
• Most modern processors do not implement “true LRU” 

(also called “perfect LRU”) in highly-associative caches

• Why?
– True LRU is complex
– LRU is an approximation to predict locality anyway (i.e., not 

the best possible cache management policy)

• Examples:
– Not MRU (not most recently used)
– Hierarchical LRU: divide the N-way set into M “groups”, track 

the MRU group and the MRU way in each group
– Victim-NextVictim Replacement: Only keep track of the victim 

and the next victim
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Hierarchical LRU (not MRU)
• Divide a set into multiple groups
• Keep track of only the MRU group
• Keep track of only the MRU block in each group

• On replacement, select victim as:
– A not-MRU block in one of the not-MRU groups 

(randomly pick one of such blocks/groups)
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Cache Replacement Policy: LRU or Random
• LRU vs. Random: Which one is better?

– Example: 4-way cache, cyclic references to A, B, C, D, E 
• 0% hit rate with LRU policy

• Set thrashing: When the “program working set” in a set is 
larger than set associativity
– Random replacement policy is better when thrashing occurs

• In practice:
– Depends on workload
– Average hit rate of LRU and Random are similar

• Best of both Worlds: Hybrid of LRU and Random
– How to choose between the two? Set sampling

• See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ ISCA 
2006.
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What Is the Optimal?
• Belady’s OPT

– Replace the block that is going to be referenced furthest in 
the future by the program

– Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

– How do we implement this? Simulate?

• Is this optimal for minimizing miss rate?
• Is this optimal for minimizing execution time?

– No. Cache miss latency/cost varies from block to block!
– Two reasons: Remote vs. local caches and miss overlapping
– Qureshi et al. “A Case for MLP-Aware Cache 

Replacement,“ ISCA 2006.
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What’s In A Tag Store Entry?
• Valid bit
• Tag
• Replacement policy bits

• Dirty bit?
– Write back vs. write through caches
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Handling Writes (I)
n When do we write the modified data in a cache to the next 

level?
• Write through: At the time the write happens
• Write back: When the block is evicted

– Write-back
+ Can combine multiple writes to the same block before eviction

– Potentially saves bandwidth between cache levels + saves energy
-- Need a bit in the tag store indicating the block is “dirty/modified”

– Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence because 

no need to check close-to-processor caches’ tag stores for presence
-- More bandwidth intensive; no combining of writes
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Handling Writes (II)
• Do we allocate a cache block on a write miss?

– Allocate on write miss: Yes
– No-allocate on write miss: No

• Allocate on write miss
+ Can combine writes instead of writing each of them 

individually to next level
+ Simpler because write misses can be treated the same way as 

read misses
-- Requires (?) transfer of the whole cache block

• No-allocate
+ Conserves cache space if locality of writes is low (potentially 

better cache hit rate)
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Handling Writes (III)
• What if the processor writes to an entire block 

over a small amount of time?

• Is there any need to bring the block into the 
cache from memory in the first place?

• Ditto for a portion of the block, i.e., subblock
– E.g., 4 bytes out of 64 bytes
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Cache Performance



Cache Parameters vs. Miss/Hit Rate

• Cache size
• Block size
• Associativity

• Replacement policy
• Insertion/Placement policy
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Cache Size
• Cache size: total data (not including tag) capacity

– bigger can exploit temporal locality better
– not ALWAYS better

• Too large a cache adversely affects hit and miss latency
– smaller is faster => bigger is slower
– access time may degrade critical path

• Too small a cache
– doesn’t exploit temporal locality well
– useful data replaced often

• Working set: the whole set of data                                                    
the executing application references 
– Within a time interval 
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Block Size
• Block size is the data that is associated with an address tag 

– not necessarily the unit of transfer between hierarchies
• Sub-blocking: A block divided into multiple pieces (each with V bit)

– Can improve “write” performance

• Too small blocks
– don’t exploit spatial locality well
– have larger tag overhead

• Too large blocks
– too few total # of blocks à less

temporal locality exploitation
– waste of cache space and 
bandwidth/energy:

if spatial locality is not high
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Paper Review #1: Summary
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• Contents and merits are summarized well
• Main problems are in weaknesses and future work parts
• Unjustified claims or too high-level

• "I don't believe ... is a realistic assumption“

• "the paper should provide possible future research direction"
• We can list more specific examples on what can be done 
differently/better



Paper Review #1: Grades Distribution
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Review #3: Cache Compression

• Pekhimenko et al., “Base-Delta-Immediate 
Compression: Practical Data Compression for On-Chip 
Caches,” PACT 2012
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